# GIL全局解释器锁
GIL,是最流行的 Python 解释器 CPython 中的一个技术术语。它的意思是全局解释器锁,本质上是类似操作系统的 Mutex。每一个 Python 线程,在 CPython 解释器中执行时,都会先锁住自己的线程,阻止别的线程执行。
Python 的线程,的的确确封装了底层的操作系统线程,在 Linux 系统里是 Pthread(全称为 POSIX Thread),而在 Windows 系统里是 Windows Thread。另外,Python 的线程,也完全受操作系统管理,比如协调何时执行、管理内存资源、管理中断等等。
么,为什么 CPython 需要 GIL 呢?这其实和 CPython 的实现有关。下一节我们会讲 Python 的内存管理机制,今天先稍微提一下。
CPython 使用引用计数来管理内存,所有 Python 脚本中创建的实例,都会有一个引用计数,来记录有多少个指针指向它。当引用计数只有 0 时,则会自动释放内存。
什么意思呢?我们来看下面这个例子:
>>> import sys
>>> a = []
>>> b = a
>>> sys.getrefcount(a)
3
这个例子中,a 的引用计数是 3,因为有 a、b 和作为参数传递的 getrefcount 这三个地方,都引用了一个空列表。
这样一来,如果有两个 Python 线程同时引用了 a,就会造成引用计数的 race condition,引用计数可能最终只增加 1,这样就会造成内存被污染。因为第一个线程结束时,会把引用计数减少 1,这时可能达到条件释放内存,当第二个线程再试图访问 a 时,就找不到有效的内存了。
所以说,CPython 引进 GIL 其实主要就是这么两个原因:
一是设计者为了规避类似于内存管理这样的复杂的竞争风险问题(race condition);
二是因为 CPython 大量使用 C 语言库,但大部分 C 语言库都不是原生线程安全的(线程安全会降低性能和增加复杂度)。
CPython 中还有另一个机制,叫做 check_interval,意思是 CPython 解释器会去轮询检查线程 GIL 的锁住情况。每隔一段时间,Python 解释器就会强制当前线程去释放 GIL,这样别的线程才能有执行的机会。
通过这种方式交替执行线程,实现“伪并行”